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1. INTRODUCTION

In the last decades important problems have been solved concerning
rational approximation of holomorphic functions on a compact subset
of the plane. One way of approaching these problems has been by means
of functional analysis methods, emerging from the study of certain Banach
algebras of functions (see, e.g., [9-11]).

In this paper similar methods are used to prove approximation theorems
for the solutions of a hypercomplex differential equation in the (m + 1)­
dimensional Euclidean space. The operator Die considered is a generalized
Cauchy-Riemann operator acting on functions f defined in an open non­
empty subset Q of lRm+1 and with values in a Clifford algebra d constructed
over a quadratic n-dimensional real vector space (m ~ n). It should be noted
that the operator Die may be identified with a strongly elliptic system of
homogeneous differential operators (Section 2). Note also that the solutions
of the equation DlcJ = 0 form a subclass of the set of vector-valued poly­
harmonic functions and that, when m = n = 1, the class of polyanalytic
functions of a complex variable is thus obtained.

We first prove that if K is a compact subset of IRm+l, then any function
which satisfies DlcJ = 0 in an open neighborhood of K can be uniformly
approximated on K by a sequence of polynomial solutions of the equation
(if co K is connected) or by a sequence of "rational" solutions having their
singularities off K (K arbitrary). Using these results, we generalize the weII~

known Runge and Hartorgs-Rosenthal theorems from holomorphic function
theory (Section 3). Finally, in Section 4 we prove a Runge type theorem for
regular solutions at infinity of the operator Dk.
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In this context we also wish to draw attention to the analogues of Runge's
theorem established by Chauveheid [3] and du Plessis [7] for harmonic func­
tions and more generally by Chauveheid [2] for the solutions of elliptic
differential operators with constant coefficients.

2. PRELIMINARIES

Let .91 be the Clifford algebra constructed over a quadratic n-dimensional
real vector space with orthogonal basis {el , .. " en}. Let furthermore eA =
ei ei ... ei be an arbitrary basic element ofd where A E&N, N = {I, 2,... , n}
l' h

and i1 < i2 < ... < ih • Then in [5] an inner product ( , )0' a norm I . io
and an involution have been defined on .91 turning it into a finite-dimensional
H*-algebra. Recall that for each A = LA AAeA Ed, !,\ I~ = 2n LA :V.
Let m ~ n, m =1= 0 and Qbe an open nonempty subset of IRra+1. Then in
[5] we have established some properties of the space MIe(Q; .91), consisting
of those functions f E CIe(D; d) for which Dlef = 0 in D, where kEN and
D = L;:'o ep)jBxi)' Among other things, it has been shown that MIe(Q; d),
provided with the topology of uniform compact convergence, is a right
d-Frechet module.

Note that, as dim .91 = 2n , the equation Dlef = 0 is equivalent to a system
of 2n linear partial differential equations, each of order k, in the 2n unknown
real valued functions fA .

If the basic elements eA of d are ordered in a certain way, then by means
of the left regular representation of d, we may associate to each ,\ E d a
2n x 2n real matrix 19('\). Remark that, as .91 has an identity eo , this repre­
sentation is an isomorphism.

Using the fact that DD = DD = Lle(} where D = L;':o ei(Bj8xi) =
eo(8j8xo) - 2:;':1 e/8(8xj) and LI = L;':o (82(8xi2), we have

PROPOSITION 2.1. The system of differential equations associated to the
hypercomplex differential operator Die is strongly elliptic.

Proof Since e(DIe) = (e(D))k, it suffices to prove that e(D) is a strongly
elliptic system (see, e.g., (8]). Also note that the order of e(D) equals one.

We now claim that for eachj = 1,... , n, e(ej) is a skew-symmetric matrix.
Indeed, taking account of the multiplication rules in d (see [5]), one may
easily check that for each A, BE &N, the element aB,A at the Bth row and
Ath column of e(ej) is equal to -aA,B • Hence, if e(ejY denotes the transpose
of e(ej), e(ej)T + e(ej) = 0 or e(ejY = e(-ej) = e(lj), j = n.
As e(eo) = 8, the identity matrix, we so obtain that e(DY = 19(15). Hence
e(DD) = 19(15) e(D) = Ll8 so that (det(e(D»2 = Ll2n. From this relation
it clearly follows that e(D) is a strongly elliptic system. I
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In view of the foregoing proposition, we can freely use basic results from
the general theory of strongly elliptic systems of differential operators.
In this connection we recall that in [6J, a bounded left (right) d-linear
functional T(l)(T<r») on the bi-d-module !!fi",(Q, d) was said to be a left
(right) d-distribution in Q. For further details concerning this type of matrix
distributions, we refer the reader to [6J.

In the next sections, a main role will be played by the (right) Cauchy
transform of an d-valued measure in ~m+l with compact support. For the
sake of completeness, we here recall its definition.

Let Ek be the fundamental solution of Dk (see, e.g., [6]) and fL be an d­
valued measure in ~m+1 with compact support. Then fL *Ek with

is the right Cauchy transform of fL.
Note that fL *Ek EL~OC(~m+1; d) and that, considered as a right d-distri­

bution in ~m+l, (p- *Ek ) Dk = 0 in CO[fLJ. Moreover, as the system of differ­
ential operators associated to Dk is strongly elliptic, fL *Ek E C",(co[p,J; d)
and (p- *Ek) Dk = 0 in cO[fLJ, which implies that fL *Ek is an analytic
d-valued function in co[p,J.

3. RUNGE'S THEOREM

We first establish some results concerning "rational" approximation of
functions f which satisfy Dkf = 0 in a neighborhood of a compact set
KC ~m+1.

DEFINITION 3.1. Let K be a compact subset of ~m+1. Then we call
Mk(K; d) the set of functions f for which there exists an open neighborhood
w of K such thatfEMiw;d).

It is clear from the definition that Mk(K; d) is a right d-module.
The following lemma is fundamental for the sequel. It gives necessary and

sufficient conditions for an d-valued measure in ~m+l supported on K to
be an annihilating measure for Mk(K; d).

LEMMA 3.1. Let fL be an d-valued measure in ~m+1 with support contained
in the compact subset K of~m+l. Then f dfL(X)f(x) = Ofor allfE MiK; d)
iff fL * Ek = 0 in co K.

Proof As to the necessary condition, let a be an arbitrary point in co K
and put f(x) = Ek(a - x). Then clearly fE Mk(K; d) and fL *Eia) =
f dfL(X) Eia - x) = O. Hence fL * E k = 0 in co K. Conversely, let
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fE M,,(K; sf). Then there exists an open neighborhood W of K such that
fE M,,(w; d). Take 1J E.@oo(W; IR) with 1J(x) = I in WI where WI is open
and K C WI C w. Thenf1J E .@oo(W; d). If fh is considered as a right d-distri­
bution fh(Tl, we have on the one side that

<pYl,f1J) = f dfh(X)f1J(x) = f dt-t(x)f(x),

while on the other side (see also [6])

<fh(Tl,j4» = <t-t(Tl * Ej;lDk,j1J) = «fh(Tl * E~Tl) D",j1J)

= (-I)"<fh(T) * Ekr), D"(f1J» = o.

Hence Jdfh(X)f(x) = 0. I
The following results all deal with density properties of certain d-modules

in either M,,(K; d) or Mk(Q; d). In their proofs, generalizations are used
of the Hahn-Banach and Riesz representation theorems which may be found
in [4, 6], respectively.

LEMMA 3.2. Let K be a compact subset of IRm-i-l whose complement is
connected, f E M k(K; d) and € > 0. Then there exists g E Millfem+l; d)
such that SUpxEK I f(x) - g(x)lo ~ €, i.e., Milfem+1; d) is uniformly dense
in M,,(K; d).

Proof Let B(O, R1) = B1 be an open ball in lfem+l such that J( C B1 .

Then obviously, Mk(El ; d) is a submodule of M,,(K; d). We now claim
that MllEl ; d) is uniformly dense in Mk(K; d).

By means of the Hahn-Banach and Riesz representation theorems, it
clearly suffices to prove that each d-valued measure t-t in IRm+I supported on
K which annihilates MllEl ; d) is also zero on M,,(K; d).

Let fh be such a measure. Then by assumption, f df-t(x) hex) = 0 for all
hE M,,(B1 ; d) so that in view of Lemma 3.1 fh * £1' = 0 in co 131 , Since
fh * £1' is analytic in co K and co K is connected, we thus have that t-t * E" = 0
in co K so that, once more by Lemma 3.1, f dfh(X)f(x) = 0 for all
fE MiK; d) or t-t annihilates M,,(K; d).

As a second step, we prove that Mk(lfem-i-l; d) is uniformly dense in
MiK; d). Consider therefore a sequence (Bi)';~l of closed balls with K C B1 C
B1 C B2 C B2 C .,. such that IRm+l = U:l Bi = U:l Bi , and put for con­
venience K = Bo •

In an analogous way as before, for each i EN, M,,(Bi-i-l ; d) is uniformly
dense in M,,(Bi ; d).

Let now f = fo E MiK; d). By a successive application of the first step
in the proof, a sequence (/;)iEN may be found such that for each i EN,
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hE MkCBi ; d) and SUP"'EB. Ih(x) - h+l(x)/o ~ e2-i - l . Take now i EN
fixed and consider in Mk(Ri ; d) the sequence (h+kr:=O . Then this is a Cauchy
sequence in MlRi ; sot) since for s < t,

sup If.(x) - ft(x) I0 ~ sup Ifix) - ft(x) I0
XGB i XEBs

~ sup Ifix) - fHl(X) + fs+I(x) - '" + ft-l(X) - ft(x) 10
"'Eii,

~ sup Ifix) - .fs+l(x) 10 + ... + sup Ift-l(x) - .ft(x) 10
xEB s XEB t _ 1

It hence remains a Cauchy sequence in Mk(Ri ; d) so that, as Mk(Ri ; sot)
is a right Fnkhet d-module, there exists gi E Mk(Ri , d) such thath+k -+ gi
in M£Bi ; d). Moreover, as the sequence (h+k)k=O is a subsequence of
(h-I+1Jk=0, the latter being convergent in Mlc(Bi-l; d) to some gi-l'
we have that gi restricted to Ri- l coincides with gi-l . So we have obtained
a sequence (gi)~l with gi E Mk(Bi ; d) for all i = 1, 2, ... and gi IBi-l = gi-l .
As IRm+I = U:l Bi , for each x E IRm+l there exists a least index i ;?: 1 such
that x E Bi . We may so define a function g in 1Rm+1 by putting g(x) = gi(X),
x E IRm+I. Obviously, g E MilRm+l; sot). M&eover, SUP"'EK II(x) - g(x)lo ~ '0,

since for each x E K,

I/(x) - g(x)lo = ~im II (x) - jj(x)lo
J->W

= l.im II (x) - hex) + flex) - ... + jj_lx) - jj(x) 10
J->W

~ lim (I f(x) - h(x)lo + '" + Ijj-lx) - jj(x)lo)
j~dJ ,

~ ~~~ E ( ±-}) = E. I
1 r=l

Remarks. 1. In [5] we have proved that if fE Mk(D; d) and a ED,
then there exists a suitable neighborhood Q a of a such thatf admits a Taylor
development in Da . As compared with the case of holomorphic functions
of a complex variable, the role of the powers of (z - a) is taken over by
homogeneous polynomials of the form

(*)

where pEN, 0 ~ s ~ min(p; k - 1), (/1"'" Ip_J E{I,..., m}P-s and

VI1 .. ·!p_,(X) = L ZllZl2 •• , Zlp_s'
'lT0l'0 .. ,lp_s)



RUNGE'S THEOREM 205

the sum running over all distinguishable permutations of 11 ,12 "", 111- 8

taken all at a time. Hereby, z! = x!eO- xOe! , 1= 1,... , m. Let us also recall
that each of the homogeneous polynomials (*) is in Mk(~m+l; &:I).

The Taylor development in a then reads as follows:

'" min(p.7c-l)

f(x) = I L
P~O 8~0

( X - a )8 oP-SD"/
o 0 V (x - a) --;:-----c:::-"---

8 ' !l'''!P-S OX .. , ax. ~ ~-.

It can also be proved that iffE Mk(~m+l; &:I), then its Taylor development
in 0 holds in the whole of IRm+1.

2. Let fL = {(Xos/8!) V! ... ! (x): pEN, 0 ~ 8 ~ min(p, k - 1),
1 :P-s

(II"'" Ip_8) E{I,... , m}P-s} and put fY = SPdfL, the right &:I-span of fL.
In view of the Taylor expansion, Lemma 3.2 may be restated in the

the following way: "Let K be a compact subset of ~m-'-1 with co K connected.
Then fY is uniformly dense in MIlK; &:I)."

3. Let G be a suitable open annular domain centred at the origin with
associated Laurent domain G* and suppose that fE Mk(G; &:I). Then in
analogy with the results from [1], f admits the following Laurent expansion
in G*:

00 min(p,k-l)

f(x) = L L
P~O S~O

'" min(p,k-l)

-L L
P~O S~O

where again for each pE Nand 0 ~ 8 ~ min(p, k - I), A\~~ .. !p_s,fL\~~ .. !p_s Ed.
Moreover, for each (11"'" lp _ s) E{I,... , mp-s,

with p2 = 2::0 (Ui - Xi)2 and it - x = 2:~:0 (Ui - Xi) ei .
Note that the functions (xos/s!) X l1.. ,l,,_.(X) all belong to Mk(~m+1\{O},d);

they thus take over the role of the negative powers of z in the case of holo­
morphic functions of a complex variable. Denote their set by .'?l(O) and, if
o E iRm+s, call .%'(a) the set of functions of the form «xo - 00)8/S!) X

X!l ... l,,_s(X - 0), pEN, 0 ~ 8 ~ min(p, k - 1), (11'"'' lv-s) E{I, ... , m}P-s,
Note also that, since
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and DSE,e = Ek - s (0 ~ S < k) (see [5]), for any p E 1\1 and 0 < s ~
min(p, k - 1),

oP-SDSE
k

OX1
1

••• OXl
tJ

_
8

Each of these functions thus has a (k)-pole in O.
Now let K be an arbitrary compact subset of lRm+1 and Qo, Q1 , Q~ ,...

be the components of co K, Qo being unbounded. Let furthermore a = {ai}
be a subset of co K which contains one point in each Q i , i = 1,2,... Then
we call.%'(a) = Ui>l.%'(ai) and .%'*(a) = sPd.%'(a).

Clearly the right d-module M k (lR ffl+1; d) E8 31!*(a) consists of functions
having their singularities ((k)-poles) off K, namely in a.

Using the above notations we have

LEMMA 3.3. If K is a compact subset of lRm+1 and a is a subset of co K
having one point in each bounded component of co K, then M k ClRm+1; d) ED
81'*(a) is uniformly dense in MiK; d).

Proof In view of the Hahn-Banach and Riesz representation theorems,
it clearly suffices to prove that if ,u is an d-valued measure in IRm+1 with
compact support contained in K such that f d,u(x) hex) = 0 for each
hE M k(lR1n+1; d) EB R*(a), then f d,u(x) f(x) = 0 for all f E Mk(K; d).

Let,u be such a measure, consider,u *Ex and take an arbitrary i E N\{O}.
Then, if ai EDi , we have that for each pEN, a < s < min(p, k - 1),
(h ,..., lv-s) E {l, ... , mpH,

= O.

As (,u *Ek ) Dk = 0 in co [,u], taking account of the Taylor expansion for
,u * Ex in a neighborhood of ai and of the fact that Di is connected, we may
conclude that ,u * Ere = 0 in Q i •

Call Ko = co Do and take 10 E Mre(Ko ; d). Then, as Ko is a compact set
whose complement is connected, it follows from Lemma 3.2 that a sequence
(gj)ieN in M k(lRm+1 ; d) may be found such that sUPxexl) l.fo(x) - gJCx)lo ~ 0
if j -+ 00.

Consequently

~im f d,u(x).fo(x) = ~im f dp,(x)(fo(x) - gj(x» = a
]----'700 ]-}OCJ
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and so JdfL(X)fo(x) = 0 for all fo E MilKo; S?i), whence fL * Ek = 0 in
co Ko = Q o (Lemma 3.1.).

We have thus proved that fL * Ek = 0 in co K so that, again in view of
Lemma 3.1, f dfL(x)f(x) = 0 for all fE Mk(K; d). I

Now let Q be an open subset of IRm+1 and iX be a subset of co Q having
one point in ea9h component of co Q. Furthermore, put ~(iX) = Uac" ~(a),

a being an arbitrary finite or countable subset of ex and call ~*(ex) = SPd~( iX).
Clearly M k (lRm+1; d) EB ~*(iX) then consists of functions having their
singularities (k)-poles) in co fJ, namely in ix. We so arrive at

THEOREM 3.1 (Runge). Let fJ be an open subset of IRm-:-l and IX be a
subset of co Q having one point in each component of co Q. Then
MlllRm+1 ; S?i) EB ~*(ix) is dense in Mi.fJ; S?i) for the topology of uniform
compact convergence. In particular, if co Q is connected and unbounded,
Mk(lRm+1; S?i) is dense in Mk(Q; d).

Proof. Call for eachj = 1,2,... ,

K j = {x E Q: I x I ~ j and d(x, co Q) ~ ljj}.

Then (Kj ):1 is a compact exhaustion of Q. Decompose co K j in its compo­
nents Qoj, fJ I

j
, fJ2

j
, •• ·, with Qoj the unbounded one. Since each component

of co K j contains a component of co Q, Q/ n IX 0/= 0 for all i = 1,2,....
Take a/ E Q/ n IX, i = 1,2,... , and call aj = (a./). Now let fE MIlQ; d),
PK be the seminorm on Mk(Q; S?i) associated to K j and € > O. Then clearly,
f E Mk(Kj ; d) so that, in view of Lemma 3.3, there exists a function hj E

Mk(lRm+l; d) EB ~*(aj), having its singularities in aj C iX, such that
pdf - hj) = SUP"'EK I f(x) - h;(x)lo ~ E. I, ,

Remark. In fact we have that & EB 81!*(iX) is dense in Mk(Q; S?i).

THEOREM 3.2 (Hartogs-Rosenthal) Let K be a compact subset of IRm+I

with Lebesgue measure zero and a be a subset of co K having one point in
each bounded component of co K. Then Mk(lRm+l; d) EB ~*(a) is uniformly
dense in CoCK; d).

Proof. Let fL be an £-valued measure in IRrrhl supported on K such that
fL annihilates Mk(lRm+l; d) EB 81!*(a). Then it follows from Lemma 3.3
that fL is zero on Mk(K; d). Consequently fL *Ek = 0 in co K so that,
K having Lebesgue measure zero, fL * E k = 0 l.a.e. in IRm+I. Theorem 4.3
in [6] then tells us that fL = O. I

Remark. If Khas Lebesgue measure zero, we have in fact that & EB 81!*(a)
is uniformly dense in CoCK; S?i).
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4. RUNGE'S THEOREM FOR REGULAR SOLUTIONS AT INFINITY

If K is a compact subset of IRm+1, then we have introduced in [6] the right
d-module Mk(co K; d) consisting of aU solutions of Die in co K which are
regular at infinity with respect to Ek . It has been shown that Mico K; d)
is a closed submodule of Mk(co K; d) and that eachfE Mico K; d) may
be represented by a Cauchy type formula off some compact neighborhood
K1 of K.

The aim of this section is to establish a Runge-type theorem for the ele­
ments in Mk(co K; d).

From Theorem 3.1 we already know that M k(lRm+1; d) EB 91?*(ex) is
dense in Mk(Q; d) and that, in the particular case where co Q is connected
and unbounded, M k(lRm+1; d) is dense in MiQ; d).

Now it will be proved that if co Q = K is compact and hence bounded,
then 91?*(ex) is dense in M1cCco K; d). For the case ofholomorphic functions,
these results may be interpreted as follows. Let us repeat that if m = n =
k = 1, then d ~ C, while D is nothing else but the Cauchy-Riemann
operator a. In this case Mk(lRm+\ d) replaces the space of entire functions.
Moreover Mk(co K; d) stands for the set of functions f which are holo­
morphic in co K and for which lim....,,,tlf(z) = 0 (see [2]).

We start with a lemma which is analogous to Lemma 3.1.

LEMMA 4.1. Let K be a compact subset of IRm+1, W be an open bounded
neighborhood of K such that each component of W intersects K. If ft is an
d-valued measure with compact support contained in co w, then f dft(x) X

f(x) = Ofor allfE Mico K; d) iffft *Ek = 0 in w.

Proof As to the necessary condition, take a EK and consider the function
Ek(a - x) E Mk(co K; d). Then

ft *Ek(a) = f dft(x) Ek(a - x)

=0.

Now let w = UieN Wi be the decomposition of w in its components and
take for each i E 1\1, ai EWi n K. Then ft *Ek(ai) = O. Consequently, as
p, *Ek is an d-valued analytic function in co [p,], p, *Ek = 0 in each Wi
and so p, *E k = 0 in w.

Conversely, first remark that in co[p,], 0 * E Ic) D = JL * EkD = p, *Ek- 1

so that from ft *Ek = 0 in w, it follows that p, *E k - 1 = JL * E k - 2 = ... =
p, * E1 = 0 in w.

Now let K71 be a suitable compact neighborhood of K which is
contained in w. Then in view of Cauchy's representation formula (see
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[6, Corollary to Theorem 4.2]), for each fEe Mico K; d) and x E: KYj'

k-l

f(x) = 1 L (_l)i+l Em(t - x) dat Dif(t).
8KYj i~O

Hence, using the fact that f.t * Em = 0 in w (j = 0, 1,... , k - 0, we obtain
that

k-l

= i L (_l)i+l f.t * Em(t) dUt Dif(t)
8KTi i=O

=0.

This proves the sufficient condition since f E: Mle(co K; d) has been taken
arbitrarily. I

Using the notations of the previous section, we have

THEOREM 4.1. Let K be a compact subset of IRm+l and ex be a subset
of K having one point in each component of K. Then ~*(C\:) is dense
in M/o(co K; d) for the topology of uniform compact convergence.

Proof First we remark that ~*(C\:) is a submodule of Mico K; d)since
each of its elements is a right d-linear combination of functions having
the form op-sEix - at) DB/ax! ... ax! , where p E: N, 0 ~ s ~

1 If-a

min(p, k - 1), (11 ,,,,, l1'-s) E{I,... , m}P-s and at E: ex. To prove that ~*(C\:)

is dense in Mle(co K; d), by the Hahn-Banach and Riesz representation
theorems, it clearly suffices to show that if T is a bounded right Jd'-Iinear
functional on CoCK; d) which annihilates ~*(ex), then it vanishes on
Mk(co K; d) too.

To this end. let again (Kj)jEN be the compact exhaustion of Q = co K
considered so far and suppose that T is a right d-linear functional on
CoCK; d) bounded by some PK., which annihilates ~*(ex). Furthermore,
choose j ENlarge enough such that K and {x: d(x, K) ~ l/j} both are con­
tained in {x E IRm+l: I x I <j}. Then there exists an d-valued measure
iJ- supported on K j such that

T(f) = f df.t(x) f(x), fEe coCco K; d).
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Now let co K j = Qoj u Q/ U Q 2j u ... be the <;iecomposition of co K j in its
components, Q/ being the unbounded one. Then K C w = Ui?l Q/,
w being a bounded open neighborhood of K such that each component of
w contains at least one component of K.

Hence, for each i = 1,2,..., Q/ n ex =F 0 so that, taking a/ E Q/ n ex,
i = 1, 2, ... , aj = (a/)i?l C ex.

As fL *Ek is an d-valued analytic function in colJ.c.], for each i = 1,2, ...,
there exists an open neighborhood Q a ) of a/ in which fL *Ek admits a
Taylor development. But, as by assumption,

=0,

we have that fL *Ek = 0 in Q a ) •

Consequently, Q/ C CO[fL] being connected, we obtain that fL *Ek = 0 in
Q/ so that fL *Ek = 0 in w = Ui?l Q/,

Taking account of Lemma 4.1 we find that f dfL(X) f(x) = 0 for all
IE Mk(co K; d). I
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